

SwitchBlade® x908 Generation 2

High Capacity Stackable Layer 3+ Modular Switch

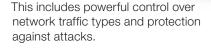
The Allied Telesis SBx908 GEN2 is the ideal solution for the modern enterprise network core. This stackable modular switch also has the capacity to support Smart City and IoT networks.

The SBx908 GEN2 delivers a future-proof network with superior flexibility, coupled with the ability to stack multiple units.

The high-capacity 2.6 Terabit fabric eliminates bottlenecks, effortlessly streams video and ensures all traffic in large networks is delivered reliably. Flexible hot-swappable expansion modules (XEMs) support 10 Gigabit, 40 Gigabit, and 100 Gigabit to easily expand the SBx908 GEN2 to meet network traffic demands, both now and well into the future.

Smart City and IoT networks

The SBx908 GEN2 has large switching and routing tables to support Smart City networks and the Internet of Things (IoT). It meets the increasing demand for the convergence of multiple services, like video surveillance, public Wi-Fi, information kiosks, environmental information and more.


Powerful network management

The Allied Telesis Autonomous Management Framework[™] (AMF) easily meets the increasing management requirements of modern converged networks, by automating many everyday tasks such as configuration management. AMF has powerful centralized management features that allow an entire network to be easily managed, as one single virtual device.

Vista Manager[™] EX is an intuitive visualization tool that complements the power of AMF. It allows a user to monitor the network and quickly identify issues before they become major problems.

Secure

The SBx908 GEN2 is packed with advanced security features to protect the network—from the edge to the core.

AMF ensures secure network management without the overhead of additional complexity.

Resilient

The convergence of network services in the enterprise has led to increasing demand for highly available networks with minimal downtime. Virtual Chassis Stacking (VCStack[™]), in conjunction with link aggregation, provides a network with no single point of failure and a resilient solution for high-availability applications. The SBx908 GEN2 can form a VCStack of up to four units, at any port speed, for enhanced resiliency and simplified device management. Stacks can also be created over long distance fiber links, making it the perfect choice for distributed environments too.

Allied Telesis Ethernet Protection Switched Ring (EPSRing[™])—and in the future, G.8032 ERPS—ensure that distributed network segments have high-speed, resilient access to online resources and applications.

Reliable

Designed with reliability in mind, the SBx908 GEN2 guarantees the continual delivery of essential services. Hot-swappable components such as XEMs, fans, and load-sharing Power Supply Units (PSUs) pair with nearhitless online stack reconfiguration, to ensure that maintenance doesn't affect network uptime.

Environmentally friendly

The SBx908 GEN2 supports Energy Efficient Ethernet (EEE), automatically reducing the power consumed by the switch whenever there is no traffic on a port, reducing operating costs.

Allied Ware Plus

Key Features

- ▶ 2.6 Terabit fabric
- ▶ 10G, 40G, 100G XEMs
- ► Allied Telesis Autonomous Management Framework[™] (AMF)
- Active Fiber Monitoring of fiber data and stacking links
- Scalable and flexible
- ▶ OpenFlow v1.3 for SDN
- ► Large switching and routing tables
- VCStack up to 4 units, at any port speed
- VCStack over long distance

Coming Soon

- ▶ G.8032 ERPS for resilient rings
- ► Energy Efficient Ethernet (EEE)

NETWORK SMARTER

Key Features

VCStack™

Create a VCStack of up to four units at any port speed. Stacking links are connected in a ring so each device has dual connections to further improve resiliency. VCStack provides a highly available system where network resources are spread out across stacked units, reducing the impact if one of the units fails. Aggregating switch ports on different units across the stack provides excellent network resiliency.

VCStack LD

 Long-distance stacking allows a VCStack to be created over fiber links to span longer distances, perfect for a distributed network environment.

AMF™

- AMF is a sophisticated suite of management tools that provide a simplified approach to network management. Common tasks are automated or made so simple that the everyday running of a network can be achieved without the need for highly-trained, and expensive, network engineers. Powerful features like centralized management, auto-backup, auto-upgrade, auto-provisioning and auto-recovery enable plug-and-play networking and zero-touch management.
- The SBx908 GEN2 can operate as the AMF network master, storing firmware and configuration backups for all other network nodes. The AMF master enables auto-provisioning and autoupgrade by providing appropriate files to new network members.
- AMF Guestnode allows Allied Telesis wireless access points and further switching products, as well as third party devices such as IP phones and security cameras, to be part of an AMF network.

Large network tables

High-capacity 2.6 Terabit fabric and 1,905Mpps packet forwarding provide powerful data transfer capability, supporting large campus networks as well as Smart City and IoT solutions. Large MAC and IP host tables are ready for the increasing number of connected devices found in modern enterprise and city-wide networks.

Virtual Routing and Forwarding (VRF Lite)

 VRF Lite provides Layer 3 network virtualization by dividing a single switch into multiple independent virtual routing domains. With independent routing domains, IP addresses can overlap without causing conflict, allowing multiple customers to have their own secure virtual network within the same physical infrastructure.

EPSRing™

- EPSRing allows several switches to form protected rings with 50ms failover—perfect for high performance at the core of Enterprise or Provider Access networks.
- SuperLoop Protection enables a link between two EPSR nodes to be in separate EPSR domains, improving redundancy and network fault resiliency.

G.8032 Ethernet Ring Protection

- G.8032 provides standards-based high-speed ring protection, that can be deployed stand-alone, or interoperate with Allied Telesis EPSR.
- Ethernet Connectivity Fault Monitoring (CFM) proactively monitors links and VLANs, and provides alerts when a fault is detected.

sFlow

SFlow is an industry standard technology for monitoring high speed switched networks. It provides complete visibility into network use, enabling performance optimization, usage accounting/billing, and defence against security threats. Sampled packets sent to a collector ensure it always has a real-time view of network traffic.

Quality of Service (QoS)

Comprehensive low-latency wire-speed QoS provides flow-based traffic management with full classification, prioritization, traffic shaping and min/ max bandwidth profiles. Enjoy boosted network performance and guaranteed delivery of businesscritical Ethernet services and applications. Time-critical services like voice and video applications take precedence over non-essential services like file downloads, maintaining responsiveness of Enterprise applications.

Premium Software License

By default, the SBx908 GEN2 offers a comprehensive Layer 2 and standard Layer 3 feature set that includes static routing and IPv6 management features. The feature set can easily be elevated to full Layer 3 by applying the premium software license. This adds dynamic routing protocols and Layer 3 multicasting capabilities.

Optical DDM

Most modern optical SFP/SFP+/QSFP+ transceivers support Digital Diagnostics Monitoring (DDM) functions according to the specification SFF-8472. This enables real time monitoring of the various parameters of the transceiver, such as optical output power, temperature, laser bias current and transceiver supply voltage. Easy access to this information simplifies diagnosing problems with optical modules and fiber connections.

Active Fiber Monitoring

Active Fiber Monitoring prevents eavesdropping on fiber communications by monitoring received optical power. If an intrusion is detected, the link can be automatically shut down, or an operator alert can be sent. Active Fiber Monitoring is supported on fiber data and fiber stacking links.

VLAN ACLs

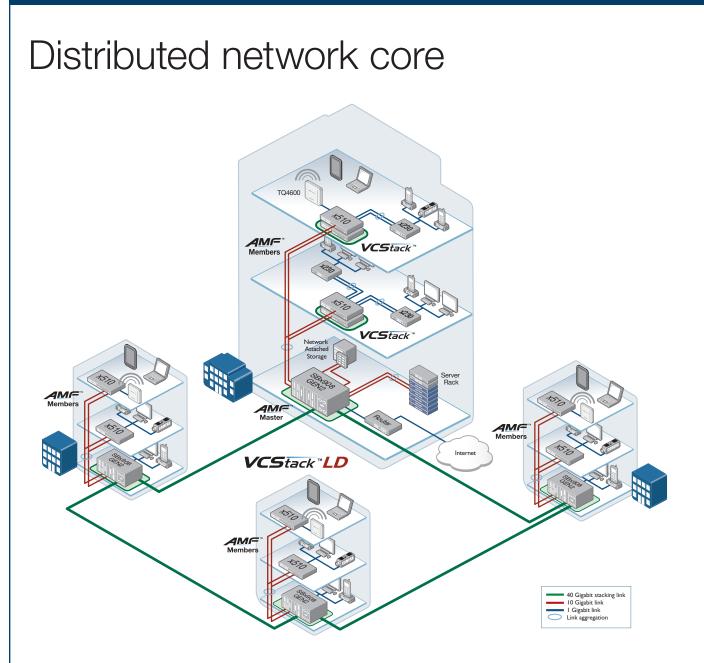
Simplify access and traffic control across entire segments of the network. Access Control Lists (ACLs) can be applied to a Virtual LAN (VLAN) as well as a specific port.

TACACS+ Command Authorization

Centralize control of which commands may be issued by a specific user of an AlliedWare Plus device. TACACS+ command authorization complements authentication and accounting services for a complete AAA solution.

UniDirectional Link Detection

UniDirectional Link Detection (UDLD) is useful for monitoring fiber-optic links between two switches that use two single-direction fibers to transmit and receive packets. UDLD prevents traffic from being sent across a bad link by blocking the ports at both ends of the link in the event that either the individual transmitter or receiver for that connection fails.


Software Defined Networking (SDN)

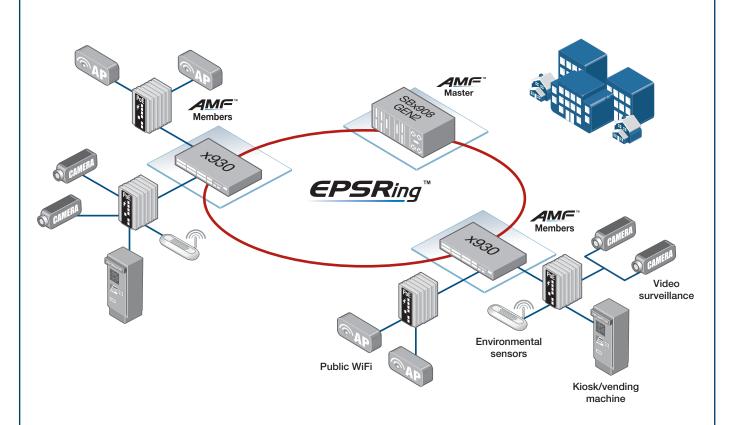
 OpenFlow is a key technology that enables the use of SDN to build smart applications that unlock value and reduce cost.

VLAN Translation

- VLAN Translation allows traffic arriving on a VLAN to be mapped to a different VLAN on the outgoing paired interface.
- In Metro networks, it is common for a network Service Provider (SP) to give each customer their own unique VLAN, yet at the customer location give all customers the same VLAN-ID for tagged packets to use on the wire. SPs can use VLAN Translation to change the tagged packet's VLAN-ID at the customer location to the VLAN-ID for tagged packets to use within the SP's network.
- This feature is also useful in Enterprise environments where it can be used to merge two networks together, without manually reconfiguring the VLAN numbering scheme. This situation can occur if two companies have merged and the same VLAN-ID is used for two different purposes.

Key Solutions

Today's large enterprises demand ready access to online resources and applications, and require a high-performing network that can seamlessly carry multiple converged services. This campus solution uses the SwitchBlade x908 GEN2 and long-distance Virtual Chassis Stacking (VCStack LD)—ideal for a distributed network core that provides high availability, increased capacity and ease of management.


Using VCStack at the core of the network allows multiple switches to appear as a single virtual chassis, simplifying management. In normal operation, the full bandwidth of the network is used, ensuring always-available online services. Seamless wireless access, and the convergence of business data, voice, and video surveillance traffic on the network, are easily supported with this powerful solution.

AMF allows the entire network to be unified for ease of management. The SwitchBlade x908 GEN2 acts as the AMF Master, automatically backing up the entire network, and enabling plug-and-play networking with zero-touch expansion and recovery.

The SwitchBlade x908 GEN2 delivers a protocol-less and Active/Active campus backbone solution, with high performance and flexible scalability.

Key Solutions

Smart City network

All over the world, Smart Cities are looking to increase information availability, security and transport efficiency, whilst reducing pollution and waste. Access to real-time data from a variety of sources gives cities the ability to enhance the quality of their urban services, and increase citizen safety.

The SwitchBlade x908 GEN2 is the ideal network core solution for Smart City and IoT networks. Large switching and routing tables support the many devices that make up modern metropolitan networks, including video surveillance cameras, environmental sensors, information kiosks, public Wi-Fi and many more. Allied Telesis EPSR creates a high-speed resilient ring that can utilize 10G, 40G or 100G, and provides extremely fast failover between nodes. EPSR enables rings to recover within as little as 50ms, preventing a node or link failure from impacting the delivery of converged data and video traffic.

AMF automates many day-to-day tasks, backs up the entire network, and provides the ability to configure many or all devices city-wide—with a single command.

The SwitchBlade x908 GEN2 and Allied Telesis advanced features support network managers in delivering leading Smart City services.

Specifications

Performance

- 2.6 Terabit Switching Fabric
- 1,905Mpps forwarding rate
- Extensive wirespeed traffic classification for ACLs and QoS
- Supports 10KB Jumbo frame size for data center and server aggregation applications
- Wirespeed multicasting
- 96K MAC address entries
- ► Up to 96K host entries
- ► Up to 4K multicast entries
- 4K VLANs
- ► 4GB DDR SDRAM
- Separate packet buffer memory
- ► 4GB Flash Memory

Reliability

- Modular AlliedWare Plus operating system
- ► Dual hot swappable PSUs with 1 + 1 redundancy
- Dual feed support: a separate power circuit can feed each power supply providing extra reliability
- ► Hot-swappable expansion modules (XEMs)*
- Hot-swappable fan modules
- Full environmental monitoring of PSUs, fans, temperature and internal voltages, with SNMP traps to alert network managers in case of any failure

Expandability

- Eight high speed expansion bays supporting a choice of modules for port flexibility and application versatility
- ► Versatile licensing options for additional features

Power Characteristics

- ► AC Voltage: 100 to 240V (+/-10% auto ranging)
- Frequency: 47 to 63Hz
- ► DC Voltage: 36 to 72V

Diagnostic Tools

- Active Fiber Monitoring detects tampering on optical links
- Built-In Self Test (BIST)
- Cable fault locator (TDR)
- Find-me device locator
- Hardware health monitoring
- Automatic link flap detection and port shutdown
- Optical Digital Diagnostic Monitoring (DDM)
- ▶ Ping polling for IPv4 and IPv6
- ► Port mirroring
- ► TraceRoute for IPv4 and IPv6
- ► Uni-Directional Link Detection (UDLD)

IPv4 Features

- Black hole routing
- Directed broadcast forwarding
- DNS relay
- Equal Cost Multi Path (ECMP) routing
- Policy-based routing
- Route maps

NETWORK SMARTER

- ► Route redistribution (OSPF, BGP, RIP)
- Static unicast and multicast routing for IPv4
- UDP broadcast helper (IP helper)
- Up to 64 Virtual Routing and Forwarding (VRF lite) domains (with license)

IPv6 Features

- DHCPv6 client and relay
- DNSv6 client and relay
- ▶ IPv4 and IPv6 dual stack
- ► IPv6 hardware ACLs
- Device management over IPv6 networks with SNMPv6, Telnetv6 and SSHv6
- NTPv6 client and server
- Static unicast and multicast routing for IPv6
- Log to IPv6 hosts with Syslog v6

Management

- 7-segment LED provides at-a-glance status and fault information
- Allied Telesis Management Framework (AMF) enables powerful centralized management and zero-touch device installation and recovery
- ▶ Try AMF for free with the built-in Starter license
- Console management port on the front panel for ease of access
- Eco-friendly mode allows ports and LEDs to be disabled to save power
- Industry-standard CLI with context-sensitive help
- ► Out-of-band 10/100/1000T Ethernet management
- port
 Powerful CLI scripting engine
- Comprehensive SNMP MIB support for standardsbased device management
- Built-in text editor
- Event-based triggers allow user-defined scripts to be executed upon selected system events
- USB interface allows software release files, configurations and other files to be stored for backup and distribution to other devices

Quality of Service

- 8 priority queues with a hierarchy of high priority queues for real time traffic, and mixed scheduling, for each switch port
- Bandwidth limiting (virtual bandwidth) Limit bandwidth per port or per traffic class down to 64kbps
- Wirespeed traffic classification with low latency essential for VoIP and real-time streaming media applications
- ▶ IPv6 QoS support and IPv6-aware storm protection
- Policy-based QoS based on VLAN, port, MAC and general packet classifiers
- Policy-based storm protection
- Extensive remarking capabilities and taildrop for queue congestion control
- Queue scheduling options for strict priority, weighted round robin or mixed scheduling
- ▶ IP precedence and DiffServ marking based on layer 2, 3 and 4 headers

Resiliency Features

- Control Plane Prioritization (CPP) ensures the CPU always has sufficient bandwidth to process network control traffic
- Dynamic link failover (host attach)
- Ethernet Protection Switched Rings (EPSR) with SuperLoop Protection (SLP) and EPSR enhanced recovery for extra resiliency
- Flexi-stacking allows the use of any port speed to stack
- ► Long-Distance VCStack over fiber (VCStack LD)

C617-000621 RevG

- ► Loop protection: loop detection and thrash limiting
- ▶ PVST+ compatibility mode
- STP root guard
- ► VCStack fast failover minimizes network disruption

Security

- Access Control Lists (ACLs) based on layer 3 and 4 headers
- ► Configurable ACLs for management traffic
- Auth fail and guest VLANs

BPDU protection

Inspection (DAI)

► Secure Copy (SCP)

IEEE 802.1x

Dynamic VLAN assignment

manage endpoint security

Authentication, Authorisation and Accounting (AAA)

DHCP snooping, IP source guard and Dynamic ARP

► MAC address filtering and MAC address lock-down

Network Access and Control (NAC) features

 Port-based learn limits (intrusion detection)
 Private VLANs provide security and port isolation for multiple customers using the same VLAN

Secure File Transfer Protocol (SFTP) client

Tri-authentication: MAC-based, web-based and

Strong password security and encryption

▶ RADIUS group selection per VLAN or port

OpenFlow v1.3 with support for encryption,

Environmental Specifications

Operating temperature range:

Storage temperature range:

0°C to 50°C (32°F to 122°F)

-25°C to 70°C (-13°F to 158°F)

Operating relative humidity range:

Storage relative humidity range:

3,050 meters maximum (10,000 ft)

Immunity: EN55024, EN61000-3-levels 2

Standards: UL60950-1, CAN/CSA-C22.2 No.

60950-1-03, EN60950-1, EN60825-1, AS/NZS

Restrictions on Hazardous Substances

* A reboot is required after hot-swapping a XEM2-1CQ with a XEM

SwitchBlade x908 GEN2 5

Electrical Approvals and Compliances

▶ EMC: EN55032 class A, FCC class A, VCCI class A

5% to 90% non-condensing

5% to 95% non-condensing

(Harmonics), and 3 (Flicker)

Certification: UL, cUL, TUV

(RoHS) Compliance

EU RoHS compliant

China RoHS compliant

Country of Origin

Singapore

of a different type

Operating altitude:

Safety

60950

Software Defined Networking (SDN)

connection interruption and inactivity probe

Derated by 1°C per 305 meters (1,000 ft)

▶ TACACS+ command authorisation

Web-based authentication

 Bootloader can be password protected for device security

Physical Specifications

PRODUCT	WIDTH	DEPTH	HEIGHT	MOUNTING	WEIGHT	
					UNPACKAGED	PACKAGED
SwitchBlade x908 GEN2	440 mm (17.32 in)	480 mm (18.89 in)	132 mm (5.19 in)	Rack-mount 3RU	14.32 kg (31.57 lb)	16.7 kg (36.81 lb)
SBxPWRSYS2	84 mm (3.30 in)	170 mm (6.69 in)	40 mm (1.57 in)	N/A	1.32 kg (2.91 lb)	1.9 kg (4.18 lb)
XEM2-12XS	109 mm (4.29 in)	170 mm (6.69 in)	40 mm (1.57 in)	N/A	0.82 kg (1.80 lb)	1.4 kg (3.08 lb)
XEM2-12XT	109 mm (4.29 in)	170 mm (6.69 in)	40 mm (1.57 in)	N/A	0.82 kg (1.80 lb)	1.4 kg (3.08 lb)
XEM2-4QS	109 mm (4.29 in)	170 mm (6.69 in)	40 mm (1.57 in)	N/A	0.82 kg (1.80 lb)	1.4 kg (3.08 lb)
XEM2-1CQ	109 mm (4.29 in)	170 mm (6.69 in)	40 mm (1.57 in)	N/A	0.82 kg (1.80 lb)	1.4 kg (3.08 lb)

Latency (microseconds)

PRODUCT	
XEM2-12XT (1G/10G)	2.4 µs
XEM2-12XS (1G/10G)	1.9 µs
XEM2-4QS (40G)	0.7 µs
XEM2-1CQ (100G)	0.7 µs

Standards and Protocols

AlliedWare Plus Operating System Version 5.4.8

Authentication

RFC 1321	MD5 Message-Digest algorithm
RFC 1828	IP authentication using keyed MD5

Border Gateway Protocol (BGP)

BGP dynamic capability BGP outbound route filtering

Dai outboui	nu routo intornig
RFC 1772	Application of the Border Gateway Protocol
	(BGP) in the Internet
RFC 1997	BGP communities attribute
RFC 2385	Protection of BGP sessions via the TCP MD5
	signature option
RFC 2439	BGP route flap damping
RFC 2545	Use of BGP-4 multiprotocol extensions for
	IPv6 inter-domain routing
RFC 2858	Multiprotocol extensions for BGP-4
RFC 2918	Route refresh capability for BGP-4
RFC 3392	Capabilities advertisement with BGP-4
RFC 3882	Configuring BGP to block Denial-of-Service
	(DoS) attacks
RFC 4271	Border Gateway Protocol 4 (BGP-4)
RFC 4360	BGP extended communities
RFC 4456	BGP route reflection - an alternative to full
	mesh iBGP
RFC 4724	BGP graceful restart
RFC 4893	BGP support for four-octet AS number space
RFC 5065	Autonomous system confederations for BGP
Cryptog	ranhia Algorithms

Cryptographic Algorithms

FIPS Approved Algorithms Encryption (Block Ciphers):

 AES (ECB, CBC, CFB and OFB Modes) 		
3DES (ECB, CBC, CFB and OFB Modes)		
Block Cipher Modes:		
► CCM		

- ► CMAC
- ► GCM
- ► XTS

Digital Signatures & Asymmetric Key Generation:

- DSA
- ► ECDSA
- ► RSA
- Secure Hashing:
- SHA-1
- SHA-2 (SHA-224, SHA-256, SHA-384. SHA-512)

Message Authentication:

HMAC (SHA-1, SHA-2(224, 256, 384, 512) Random Number Generation:

► DRBG (Hash, HMAC and Counter)

Non FIPS Approved Algorithms

RNG (AES128/192/256) DES MD5

Ethernet Standards

IEEE 802.2 Logical Link Control (LLC) IEEE 802.3 Ethernet IEEE 802.3ab1000BASE-T IEEE 802.3ae10 Gigabit Ethernet IEEE 802.3an10GBASE-T IEEE 802.3azEnergy Efficient Ethernet (EEE) IEEE 802.3ba40GBASE-X IEEE 802.3x Flow control - full-duplex operation IEEE 802.3z 1000BASE-X

IPv4 Features

IPV4 realures			
RFC 768	User Datagram Protocol (UDP)		
RFC 791	Internet Protocol (IP)		
RFC 792	Internet Control Message Protocol (ICMP)		
RFC 793	Transmission Control Protocol (TCP)		
RFC 826	Address Resolution Protocol (ARP)		
RFC 894	Standard for the transmission of IP datagrams		
	over Ethernet networks		
RFC 919	Broadcasting Internet datagrams		
RFC 922	Broadcasting Internet datagrams in the		
	presence of subnets		
RFC 932	Subnetwork addressing scheme		
RFC 950	Internet standard subnetting procedure		
RFC 951	Bootstrap Protocol (BootP)		
RFC 1027	Proxy ARP		
RFC 1035	DNS client		
RFC 1042	Standard for the transmission of IP datagrams		
	over IEEE 802 networks		
RFC 1071	Computing the Internet checksum		
RFC 1122	Internet host requirements		
RFC 1191	Path MTU discovery		
RFC 1256	ICMP router discovery messages		
RFC 1518	An architecture for IP address allocation with CIDR		
RFC 1519	Classless Inter-Domain Routing (CIDR)		
RFC 1542	Clarifications and extensions for BootP		
RFC 1591	Domain Name System (DNS)		
RFC 1812	Requirements for IPv4 routers		
RFC 1918	IP addressing		
RFC 2581	TCP congestion control		
IPv6 Features			
RFC 1981	Path MTU discovery for IPv6		
RFC 2460	IPv6 specification		
RFC 2464	Transmission of IPv6 packets over Ethernet		
	networks		
RFC 3484	Default address selection for IPv6		
RFC 3587	IPv6 global unicast address format		
RFC 3596	DNS extensions to support IPv6		
RFC 4007	IPv6 scoped address architecture		
DE0 4100	Uninversional IDvC versional addresses		

RFC 4193	Unique local IPv6 unicast addresses
RFC 4213	Transition mechanisms for IPv6 hosts and
	routers

RFC 4291	IPv6 addressing architecture	
RFC 4443	Internet Control Message Protocol (ICMPv6)	
RFC 4861	Neighbor discovery for IPv6	
RFC 4862	IPv6 Stateless Address Auto-Configuration	
	(SLAAC)	
RFC 5014	IPv6 socket API for source address selection	
RFC 5095	Deprecation of type 0 routing headers in IPv6	
RFC 5175	IPv6 Router Advertisement (RA) flags option	
RFC 6105	IPv6 Router Advertisement (RA) guard	
Management		

Management

wanagement					
AMF MIB and SNMP traps					
	AT Enterprise MIB				
	Optical DDM MIB				
SNMPv1, v2					
IEEE 802.1AE	3 Link Layer Discovery Protocol (LLDP)				
RFC 1155	Structure and identification of management				
	information for TCP/IP-based Internets				
RFC 1157	Simple Network Management Protocol (SNMP)				
RFC 1212	Concise MIB definitions				
RFC 1213	MIB for network management of TCP/IP-based Internets: MIB-II				
RFC 1215	Convention for defining traps for use with the SNMP				
RFC 1227	SNMP MUX protocol and MIB				
RFC 1239	Standard MIB				
RFC 1724	RIPv2 MIB extension				
RFC 2578	Structure of Management Information v2 (SMIv2)				
RFC 2579	Textual conventions for SMIv2				
RFC 2580	Conformance statements for SMIv2				
RFC 2674	Definitions of managed objects for bridges				
111 0 2011	with traffic classes, multicast filtering and				
	VLAN extensions				
RFC 2741	Agent extensibility (AgentX) protocol				
RFC 2787	Definitions of managed objects for VRRP				
RFC 2819	RMON MIB (groups 1,2,3 and 9)				
RFC 2863	Interfaces group MIB				
RFC 3164	Syslog protocol				
RFC 3176	sFlow: a method for monitoring traffic in				
	switched and routed networks				
RFC 3411	An architecture for describing SNMP				
	management frameworks				
RFC 3412	Message processing and dispatching for the SNMP				
RFC 3413	SNMP applications				
RFC 3414	User-based Security Model (USM) for SNMPv3				
RFC 3415	View-based Access Control Model (VACM) for SNMP				
RFC 3416	Version 2 of the protocol operations for the SNMP				
RFC 3417	Transport mappings for the SNMP				
RFC 3418	MIB for SNMP				
RFC 3621	Power over Ethernet (PoE) MIB				
RFC 3635	Definitions of managed objects for the				
	Ethernet-like interface types				
RFC 3636	IEEE 802.3 MAU MIB				
RFC 4022	MIB for the Transmission Control Protocol (TCP)				
RFC 4113	MIB for the User Datagram Protocol (UDP)				
RFC 4188	Definitions of managed objects for bridges				
RFC 4292	IP forwarding table MIB				
RFC 4293	MIB for the Internet Protocol (IP)				
RFC 4318	Definitions of managed objects for bridges				
	with RSTP				

RFC 6527 Definitions of managed objects for VRRPv3 Multicast Support Bootstrap Router (BSR) mechanism for PIM-SM IGMP query solicitation IGMP snooping (IGMPv1, v2 and v3) IGMP snooping fast-leave IGMP/MLD multicast forwarding (IGMP/MLD proxy)
Bootstrap Router (BSR) mechanism for PIM-SM IGMP query solicitation IGMP snooping (IGMPv1, v2 and v3) IGMP snooping fast-leave
Bootstrap Router (BSR) mechanism for PIM-SM IGMP query solicitation IGMP snooping (IGMPv1, v2 and v3) IGMP snooping fast-leave
IGMP query solicitation IGMP snooping (IGMPv1, v2 and v3) IGMP snooping fast-leave
IGMP snooping (IGMPv1, v2 and v3) IGMP snooping fast-leave
IGMP snooping fast-leave
1 0
0 (1 3)
MLD snooping (MLDv1 and v2) PIM for IPv6
PIM SSM for IPv6
RFC 1112 Host extensions for IP multicasting (IGMPv1)
RFC 2236 Internet Group Management Protocol v2
(IGMPv2)
RFC 2710 Multicast Listener Discovery (MLD) for IPv6
RFC 2715 Interoperability rules for multicast routing
protocols
RFC 3306 Unicast-prefix-based IPv6 multicast addresses
RFC 3376 IGMPv3
RFC 3810 Multicast Listener Discovery v2 (MLDv2) for
IPv6
RFC 3956 Embedding the Rendezvous Point (RP) address
in an IPv6 multicast address
RFC 3973 PIM Dense Mode (DM)
RFC 4541 IGMP and MLD snooping switches
RFC 4601 Protocol Independent Multicast - Sparse Mode (PIM-SM): protocol specification (revised)
RFC 4604 Using IGMPv3 and MLDv2 for source-specific
multicast
RFC 4607 Source-specific multicast for IP

RFC 4560 Definitions of managed objects for remote ping,

Open Shortest Path First (OSPF)

OSPF link-local signaling			
OSPF MD5 authentication			
Out-of-band LSDB resync			
RFC 1245	OSPF protocol analysis		
RFC 1246	Experience with the OSPF protocol		
RFC 1370	Applicability statement for OSPF		
RFC 1765	OSPF database overflow		
RFC 2328	OSPFv2		
RFC 2370	OSPF opaque LSA option		
RFC 2740	OSPFv3 for IPv6		
RFC 3101	OSPF Not-So-Stubby Area (NSSA) option		
RFC 3509	Alternative implementations of OSPF area		
	border routers		
RFC 3623	Graceful OSPF restart		
RFC 3630	Traffic engineering extensions to OSPF		
RFC 4552	Authentication/confidentiality for OSPFv3		
RFC 5329	Traffic engineering extensions to OSPFv3		
RFC 5340	OSPFv3 for IPv6 (partial support)		
RFC 1246 RFC 1247 RFC 1370 RFC 1765 RFC 2328 RFC 2370 RFC 3101 RFC 3509 RFC 3623 RFC 3630 RFC 4552 RFC 5329	Experience with the OSPF protocol Applicability statement for OSPF OSPF database overflow OSPFv2 OSPF opaque LSA option OSPFv3 for IPv6 OSPF Not-So-Stubby Area (NSSA) option Alternative implementations of OSPF area border routers Graceful OSPF restart Traffic engineering extensions to OSPF Authentication/confidentiality for OSPFv3 Traffic engineering extensions to OSPFv3		

Quality of Service (QoS)

IEEE 802.1p	Priority tagging		
RFC 2211	Specification of the controlled-load network		
	element service		
RFC 2474	DiffServ precedence for eight queues/port		
RFC 2475	DiffServ architecture		
RFC 2597	DiffServ Assured Forwarding (AF)		
RFC 2697	A single-rate three-color marker		
RFC 2698	A two-rate three-color marker		
RFC 3246	DiffServ Expedited Forwarding (EF)		
Resiliency Features			

Resiliency Features

IEEE 802.1A)	E 802.TAXLINK aggregation (static and LACP)				
IEEE 802.1D	MAC bridges				
IEEE 802.1s	Multiple Spanning Tree Protocol (MSTP)				
IEEE 802.1w	Rapid Spanning Tree Protocol (RSTP)				
IEEE 802.3ad	Static and dynamic link aggregation				
RFC 5798	Virtual Router Redundancy Protocol version 3				
	(VRRPv3) for IPv4 and IPv6				

Routing Information Protocol (RIP)

RFC 1058	Routing Information Protocol (RIP)
RFC 2080	RIPng for IPv6
RFC 2081	RIPng protocol applicability statement
RFC 2082	RIP-2 MD5 authentication
RFC 2453	RIPv2

Security Features

Security realures				
SSH remote	login			
SSLv2 and SSLv3				
TACACS+ ac	counting and authentication			
IEEE 802.1X	authentication protocols (TLS, TTLS, PEAP			
	and MD5)			
IEEE 802.1X	multi-supplicant authentication			
IEEE 802.1X	port-based network access control			
RFC 2818	HTTP over TLS ("HTTPS")			
RFC 2865	RADIUS authentication			
RFC 2866	RADIUS accounting			
RFC 2868	RADIUS attributes for tunnel protocol support			
RFC 3280	Internet X.509 PKI Certificate and Certificate			
	Revocation List (CRL) profile			
RFC 3546	Transport Layer Security (TLS) extensions			
RFC 3579	RADIUS support for Extensible Authentication			
	Protocol (EAP)			
RFC 3580	IEEE 802.1x RADIUS usage guidelines			
RFC 3748	PPP Extensible Authentication Protocol (EAP)			
RFC 4251	Secure Shell (SSHv2) protocol architecture			
RFC 4252	Secure Shell (SSHv2) authentication protocol			
RFC 4253	Secure Shell (SSHv2) transport layer protocol			
RFC 4254	Secure Shell (SSHv2) connection protocol			
RFC 5246	TLS v1.2			

Services

RFC 854	Telnet protocol specification
RFC 855	Telnet option specifications
RFC 857	Telnet echo option
RFC 858	Telnet suppress go ahead option
RFC 1091	Telnet terminal-type option

Feature Licenses

Trivial File Transfer Protocol (TFTP)
SMTP service extension
MIME
DHCPv4 (server, relay and client)
DHCP options and BootP vendor extensions
Hypertext Transfer Protocol - HTTP/1.1
Simple Mail Transfer Protocol (SMTP)
Internet message format
DHCP relay agent information option (DHCP
option 82)
DHCPv6 (server, relay and client)
IPv6 prefix options for DHCPv6
DNS configuration options for DHCPv6
Subscriber-ID suboption for DHCP relay agent
option
Simple Network Time Protocol (SNTP) version 4
Network Time Protocol (NTP) version 4

VLAN Support

Generic VLAN Registration Protocol (GVRP) IEEE 802.1ad Provider bridges (VLAN stacking, Q-in-Q) IEEE 802.1Q Virtual LAN (VLAN) bridges IEEE 802.1v VLAN classification by protocol and port IEEE 802.3acVLAN tagging

Voice over IP (VoIP)

LLDP-MED ANSI/TIA-1057 Voice VLAN

NAME	DESCRIPTION	INCLUDES	STACK LICENSING
AT-FL-GEN2-01	SwitchBlade x908 GEN2 Premium license	 OSPF¹ (16,000 routes) BGP4¹ (5,000 routes) PIMv4-SM, DM and SSM (2,000 entries) VLAN double tagging (Q-in-Q) RIPng (5,000 routes) OSPFv3 (8,000 routes) BGP4+ (5,000 routes) MLDv1 and v2 PIMv6-SM and SSM (1,000 entries) VRF lite (64 domains) RADIUS Full UDLD 	 One license per stack member
AT-FL-GEN2-AM20-1YR	AMF Master license	AMF Master 20 nodes for 1 year	One license per stack
AT-FL-GEN2-AM20-5YR	AMF Master license	AMF Master 20 nodes for 5 years	One license per stack
AT-FL-GEN2-AM40-1YR	AMF Master license	AMF Master 40 nodes for 1 year	One license per stack
AT-FL-GEN2-AM40-5YR	AMF Master license	AMF Master 40 nodes for 5 years	One license per stack
AT-FL-GEN2-AM80-1YR	AMF Master license	AMF Master 80 nodes for 1 year	One license per stack
AT-FL-GEN2-AM80-5YR	AMF Master license	AMF Master 80 nodes for 5 years	One license per stack
AT-FL-GEN2-AM120-1YR	AMF Master license	AMF Master 120 nodes for 1 year	One license per stack
AT-FL-GEN2-AM120-5YR	AMF Master license	AMF Master 120 nodes for 5 years	One license per stack
AT-FL-GEN2-AM300-1YR	AMF Master license	AMF Master 300 nodes for 1 year	One license per stack
AT-FL-GEN2-AM300-5YR	AMF Master license	► AMF Master 300 nodes for 5 years	One license per stack
AT-FL-GEN2-AC10-1YR	AMF Controller 10	► AMF Controller for 10 areas for 1 year	One license per stack
AT-FL-GEN2-AC10-5YR	AMF Controller 10	► AMF Controller for 10 areas for 5 years	One license per stack
AT-FL-GEN2-AC30-1YR	AMF Controller 30	► AMF Controller for 30 areas for 1 year	One license per stack
AT-FL-GEN2-AC30-5YR	AMF Controller 30	► AMF Controller for 30 areas for 5 years	One license per stack
AT-FL-GEN2-AC60-1YR	AMF Controller 60	► AMF Controller for 60 areas for 1 year	One license per stack
AT-FL-GEN2-AC60-5YR	AMF Controller 60	► AMF Controller for 60 areas for 5 years	One license per stack
AT-FL-GEN2-OF13-1YR	OpenFlow license	OpenFlow v1.3 for 1 year	 Not supported on a stack
AT-FL-GEN2-OF13-5YR	OpenFlow license	OpenFlow v1.3 for 5 years	 Not supported on a stack

164 OSPF and BGP routes included in base license

Ordering Information

AT-SBx908GEN2-B0y³ High capacity Layer 3+ modular switch chassis with 8 x high speed expansion bays, fans included

AT-SBxPWRSYS2-Bxy⁴ Hot-swappable load-sharing power supply⁵

SBxPWRSYS1-B8y 1200W DC system power supply

AT-FAN08-B0y³ Spare hot-swappable fan module

AT-XEM2-12XS-B0y³ 12 x 1G/10G SFP+ ports

AT-XEM2-12XT-B0y³ 12 x 1G/10G RJ45 ports

AT-XEM2-4QS-B0y³ 4 x 40G QSFP+ ports

AT-XEM2-1CQ-B0y³ 1 x 100G QSFP28 port

³Where Oy= 01 for 1 year Net Cover support 05 for 5 year Net Cover support

⁴Where xy= 1y for AC power supply with US power cord 2y for AC power supply with no power cord 3y for AC power supply with UK power cord 4y for AC power supply with AU power cord 5y for AC power supply with EU power cord

⁵Note that fans are included but NO power supplies ship with the base chassis, they must be ordered separately.

6 Using Cat 6a/7 cabling

Accessories

SFP Modules

AT-SPSX 1000SX GbE multi-mode 850 nm fiber up to 550 m

AT-SPSX/I 1000SX GbE multi-mode 850 nm fiber up to 550 m industrial temperature

AT-SPEX 1000X GbE multi-mode 1310nm fiber up to 2 km

AT-SPLX10 1000LX GbE single-mode 1310 nm fiber up to 10 km

AT-SPLX10/I 1000LX GbE single-mode 1310 nm fiber up to 10 km industrial temperature

AT-SPBD10-13 1000LX GbE Bi-Di (1310 nm Tx, 1490 nm Rx) fiber up to 10 km

AT-SPBD10-14 1000LX GbE Bi-Di (1490 nm Tx, 1310 nm Rx) fiber up to 10 km

AT-SPLX40 1000LX GbE single-mode 1310 nm fiber up to 40 km

AT-SPZX80 1000ZX GbE single-mode 1550 nm fiber up to 80 km

10GbE SFP+ Modules

AT-SP10SR 10GSR 850 nm short-haul, 300 m with MMF

AT-SP10SR/I 10GSR 850 nm short-haul, 300 m with MMF industrial temperature

AT-SP10LRM 10GLRM 1310 nm short-haul, 220 m with MMF

AT-SP10LR 10GLR 1310 nm medium-haul, 10 km with SMF

AT-SP10LR/I

10GLR 1310 nm medium-haul, 10 km with SMF industrial temperature

AT-SP10LR20/I 10GER 1310nm long-haul, 20 km with SMF industrial temperature

AT-SP10ER40/I 10GER 1310nm long-haul, 40 km with SMF industrial temperature

AT-SP10ZR80/I 10GER 1550nm long-haul, 80 km with SMF industrial temperature

AT-SP10T 10GBase-T 20 m copper⁶

10GbE SFP+ Cables

AT-SP10TW1 1 meter SFP+ direct attach cable

AT-SP10TW3 3 meter SFP+ direct attach cable

AT-SP10TW7 7 meter SFP+ direct attach cable

40G QSFP+ Modules

AT-QSFP1CU 1 meter QSFP+ direct attach stacking cable

AT-QSFP3CU 3 meter QSFP+ direct attach stacking cable

AT-QSFPLR4 40GLR4 1310 nm medium-haul, 10 km with SMF

AT-QSFPSR 40GSR 850nm short-haul up to 150 m with MMF

AT-MTP12-1 1 meter MTP optical cable for AT-QSFPSR

AT-MTP12-5 5 meter MTP optical cable for AT-QSFPSR

100G QSFP28 Modules

AT-QSFP28-SR4 100GSR 850nm short-haul up to 100 m with MMF

AT-QSFP28-LR4 100GLR 1310nm medium-haul, 10 km with SMF

🔨 🖉 Allied Telesis

NETWORK SMARTER

 North America Headquarters
 19800 North Creek Parkway
 Suite 100
 Bothell
 WA 98011
 USA
 T: +1 800 424 4284
 F: +1 425 481 3895

 Asia-Pacific Headquarters
 11 Tai Seng Link
 Singapore
 534182
 T: +65 6383 3832
 F: +65 6383 3830

 EMEA & CSA Operations
 Incheonweg 7
 1437 EK Rozenburg
 The Netherlands
 T: +31 20 7950020
 F: +31 20 7950021

alliedtelesis.com

© 2018 Allied Telesis, Inc. All rights reserved. Information in this document is subject to change without notice. All company names, logos, and product designs that are trademarks or registered trademarks are the property of their respective owners. C617-000621 RevG